Stability analysis of the inverse Lax–Wendroff boundary treatment for high order upwind-biased finite difference schemes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes

In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified ...

متن کامل

Stability Analysis of the Inverse Lax-Wendroff Boundary Treatment for High Order Central Difference Schemes for Diffusion Equations

In this paper, high order central finite difference schemes in a finite interval are analyzed for the diffusion equation. Boundary conditions of the initial-boundary value problem (IBVP) are treated by the simplified inverse Lax-Wendroff (SILW) procedure. For the fully discrete case, a third order explicit Runge-Kutta method is used as an example for the analysis. Stability is analyzed by both ...

متن کامل

Compact Upwind Biased Dispersion Relation Preserving Finite Difference Schemes

A class of higher-order compact upwind biased finite difference (FD) schemes based on the Taylor Series Expansion is developed in this work. The numerical accuracy of this family of compact upwind biased FD schemes is demonstrated by means of Fourier analysis wherein it is shown that these FD schemes have very low dispersion errors over a relatively large bandwidth of wave numbers as compared t...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2016

ISSN: 0377-0427

DOI: 10.1016/j.cam.2015.11.038